科技行业资讯门户

广告

广告

广告

广告

广告

量子通讯采用单光子传输,单光子如何被抓住?有人认为不可能

【蜂耘网   激光光学】量子通讯在中国发展得红红火火,特别有一位叫潘建伟的科学家,带领其团队取得了一个又一个突破,走在了世界的前列。有人欢呼,也有人反对和冷嘲热讽。

 

img1

 

那些反对的人主要是说,量子通讯就是扯淡,是玩概念,根本不可能实现。其中怀疑最大的就是单光子发射和接收,认为光子是世界上最小的东西,到底多小至今无人知道,人类怎么可能能够捉住一个光子发射出去呢?

 

但事实是,量子通讯还真的就是依靠一个个单光子传输,这样才能够获得无法破解的保密性。但这个单光子并非某些人凭生活常识想象的那样,像捉豆子那样一个个捉到,再把它通过某种弹弓类装置发射出去。

 

img2

 

量子通讯的三大核心技术为:单光子源技术、量子编码和传输技术、光子检测技术。这其中最重要的就单光子,并把它传输出去。这是如何实现的呢?我们来分享一下。

 

先说说什么是光子

 

光子是光量子的简称,是传递电磁相互作用的媒介子,是一种基本粒子,具有规范玻色子性质。光量子的概念是爱因斯坦1905年首先提出1926年由美国物理化学家吉尔伯·路易斯正式命名。

 

1901年,德国物理学家普朗克发现物质发出能量和吸收能量具有不连续性特征,提出能量是一份一份发出的能量子假设,并计算出了最小能量的常量,被称为普朗克常量,这是量子力学的开山之作。

 

img3

 

爱因斯坦从普朗克量子理论中得到启发1905年发表了《关于光的产生和转化的一个试探性观点》的论文,认为光和原子电子一样也具有粒子性,提光量理论,完美地解释了光电效应,创立了光电效应定律,由此获1921年诺贝尔物理学奖。

 

光子具有所有基本粒子共有的特性,即波粒二象性,以波的形式传播,且是一份一份非连续发出。光子一出生就以每秒30万千米真空速度运动,永远不会停下来,因此没有静质量,但有动量。每个光子能量为E=hv=hc/λ,即能E等于普朗克常数乘以频率。

 

普朗克常数约等6.626*10^-34J/s(焦/秒);每个光子的动量为p=E/c=h/λ。这几个公式里λ表示波长c表示光速v表示频率E表示能量p表示动量。

 

img4

 

由此可以看出,各种光子的能量是不同的,波长越短频率越高的光子能量就更强,反之则更弱。光子是宇宙中数量最多的存在,无论是白天还是黑夜,在我们周围都充满了光子,随便手一拍,就有无数的光子打在我们的手心手背上。

 

我们人类感受这个世界完全是依靠电磁波,也就是所谓的电磁相互作用力,而光子就是电磁波的传递媒介,因此电磁波也可以说是光波的总称。电磁波波长从长到短分别被人们划分为无线电波、红外线、可见光、紫外线X射线γ射线。

 

人类肉眼只能看到可见光部分,其余波段和频率只能用仪器侦测。电磁波的波长从数公里10^-30米(亿亿亿分之一米以下)不等,无线电波(包括长波、中波、短波、微波)最长,频率最低,能量最弱;伽马射线波长最短,频率最高,能量最强。

 

img5

 

电磁波波速为光速,因此波长与频率的关系遵循公式λ=c/vv=c/λ

 

一个光子

 

光子极小,而且极多,一10瓦的灯泡,发出的能量10J/s,如果10J的能量发出的都是可见光波段的话,其波长就约380~760nm之间,我们去一个平均值570nm,根据前面的公式,就可以计算出每个光子能量约3.5*10^-19J110J的灯泡每秒钟发出的光子数就有2.86*10^19个,就28.6亿亿个光子。

 

光本身就携带能量,因此用光通讯早就是常用的方法了。但所谓量子通讯,与常规通讯的最大区别就是安全,是采用单光子传输,理想的单光子源就是每个脉冲中仅1个光子。

 

img6

 

前面说了,随便一束光都有无数光子,科学家们如何从这么多的光子中,把光子分1个个分发出去呢?这就需要制造单光子源的机器。现代科技要制造出单光子源并不难,难的是高质量高效率的单光子源。

 

理论上,只要通过不断将一个既定能量的光脉冲不断衰减,就能得到所谓的单光子源。如脉动激光器,每个脉冲能量都是一定的,我们知道了既定波段或频率的光子能量,就能够计算出每个脉冲发出的光子数量,通过采用衰减片,将光束衰减足够的倍数,就能够达到每个脉冲所需发出的光子数了。

 

如某个脉冲激光发射器,原来每个脉冲发100万个光子,把这束光衰1000万倍,这样每个脉冲平均发射的光子就只0.1个了,也就10个脉冲里可能1个脉冲会1个光子,其9个脉冲没有光子,这样这个脉冲激光器就成为单光子源了。

 

img7

 

这种方法理论上还可以再稀释光子倍数,如稀1亿倍甚10亿倍,这样,就可能100个甚1000个脉冲里出12个光子现象,这样似乎单光子获得率大大提升了。

 

目前,实验室的单光子源绝大多数是采用这种方法。但这种单光子源光子数服从泊松分布,严格来讲很难实现高效率单光子脉冲。因为这个随机过程并不会以人的意志为转移,有时候会出1个脉冲包2个光子的情况,这样就降低了量子通讯的可控性和安全性。

 

衰减倍数越大,得到单光子的概率会提高,但没有光子的空脉冲就越多,效率就大大降低了。因此,这种傻瓜式的精度提升,与效率背道而驰。

 

img8

 

所以,一个完美的单光子源,需要同时满足确定性偏振、高纯度、高全同性和高效率,这是四个几乎相互矛盾的严苛条件,解决这个矛盾,这才是技术难点。

 

由此,科学家们又研究出许多获得单光子源的方法,其中量子点单光子源是目前比较先进的方法。这种方法可以让量子点稳定地发出单个光子流,与其他单光子源相比,量子点单光子源具有较高的振子强度,较窄的谱线宽度,且不会发生光退色。

 

这种单光子源技术,美国斯坦福大学2001年就研发出来了,大大降低了第二个光子产生的可能性2002年东芝和剑桥大学合作,采用量子点结构LED实现了电注入单光子发射;我国中科院半导体研究所2007年成功实现了量子点单光子发射。

 

img9

 

现在,我国在量子点单光子发射方面已经走在世界前列,以潘建伟院士为首的中科大团队首创了点脉冲共振激发技术,从根本上消除了量子点激子相干效应。采用这项技术,相比之前万分之一激发功率,就可确定地产生纯度99.5%的高品质单光子,是国际公认制备高品质单光子的利器。

 

作为一般科普,这里就不过多罗列其中复杂的专业术语了,有兴趣的朋友可以百度搜阅有关资料。

 

除了制备单光子,量子通讯还有很多复杂技术

 

这些技术包括单光子的编码和传输问题、光子检测和接收问题等等。

 

如单光子编码,就涉及到用偏振还是相位,就是采用偏振片还是半波片、各种干涉仪,如何处理编码过程带来的损耗等等。

 

img10

 

远程传输是采用光纤,还是隔空无线传递,能够传递多远,通过什么方法中继,信号如何保持或放大,采取什么样的方式实现量子密钥分发、量子隐形传态,如何解决传输过程中的安全与信号衰减问题。

 

而在接收终端,就必须有一台精确高效的单光子探测接收装置,也就是说接收1个光子就能够敏感响应。这一点似乎并不是很难做到,因为人的眼睛只要10个光子就能够感光,而青蛙的眼睛据说就能够看到单个光子。比较难的是,这个探测器要能够响应合适的波长范围,而且要高效反应,在高噪声环境实现高效通讯。

 

这些,中国已经取得突破。如科技大学郭光灿院士领导的团队与奥地利马库·休伯教授合作,成功实现了在高噪声环境下的高维量子通讯;以潘建伟为首的科学团队,构建了全球首个星地量子通信网,实现了跨4600公里的星地量子密钥分发。

 

img11

 

而意大利帕多瓦大学的研究人员,则2019年就实现了超20000公里的超远距离单光子交换传输,创造了新的世界纪录,这也证实了微型量子通讯在全球范围内实施的可能性。

 

从上述介绍可以看出,量子通讯早就已经从实验室推向了社会运用,如果还硬要说量子通讯是假的,就是选择性失明,睁开眼睛说瞎话了。

 

这里多说一句,量子通讯是基于美国科学1984年制定BB84协议和之后改进BBM92,以2012形成MDI-QKD协议,是国际上通用的量子密钥分发协议。其主要目的是利用量子力学的不确定性原理和量子不可克隆性,以光子的偏振态作为信息载体来传递密钥,增加安全通讯的距离。

 

img12

 

因此量子通讯与量子纠缠的超距超光速传输的诡异效应没有半分钱关系,如果有人刻意从这方面宣传诱导,将量子通讯神秘化,就有伪科学之嫌了。对此你怎么看?欢迎讨论,感谢阅读。

 

(蜂耘激光光学网   责任编辑:行云)

2022-03-22 16:21

广告

来源:时空通讯
量子通讯在中国发展得红红火火,特别有一位叫潘建伟的科学家,带领其团队取得了一个又一个突破,走在了世界的前列。有人欢呼,也有人反对和冷嘲热讽。

声明:凡来源标明“蜂耘网”的文章版权均为本站所有,如需转载请务必注明出处,违者本网将追究相关法律责任;所有未标明来源为“蜂耘网”的转载文章目的在于传递更多信息,均不代表本网立场及观点,“蜂耘网”不对这些第三方内容或链接做任何保证或承担任何责任;如涉及版权等问题,请在内容发表之日起一周内与本网联系,否则视为放弃相关权利。

所有评论仅代表网友意见,与本站立场无关

最新资讯

推荐阅读

热门排行

1、

2、

3、

4、

5、

6、

7、

8、

专题推荐

人物访谈

  • 一文了解查理·芒格:为什么他是巴菲特最推崇的人

    来源:
    ①巴菲特写道,“如果没有查理的灵感、智慧和参与,伯克希尔-哈撒韦公司不可能发展到今天的地位”;
    ②芒格曾表示,“如果世上未曾有过查理·芒格这个人,巴菲特的业绩依然会像现在这么漂亮 ”
    ③两周前,芒格还公开在节目中维护93岁的老友巴菲特。

    98 2023-11-29
  • 面壁者,拉里·佩奇

    来源:中欧商业评论
    这两年,硅谷钢铁侠埃隆·马斯克在社交媒体上口无遮拦,这为他的公司引来了铺天盖地的负面新闻,然而,他的好友、谷歌联合创始人拉里·佩奇却因为看不到人同样被媒体炮轰多时。他已经在公共视野中消失太久了。

    215 2022-06-15
  • 百岁中科院院士文圣常逝世!被誉为我国海浪研究的“点灯人”

    来源:南方都市报
     3月21日上午,中国海洋大学发布讣告,中国科学院院士、著名物理海洋学家、该校教授文圣常,因病医治无效,于3月20日15时37分在山东青岛逝世,享年101岁。

    255 2022-03-21

会议活动

微信公众号

广告

相关新闻