科技行业资讯门户

广告

广告

广告

广告

广告

Pancake的光学密码:一场技术突围与商业落地之间的博弈

【蜂耘网   激光光学】对于 VR 圈来说2022 年是不平凡的一年。

 

以去年全球超千万 VR 终端销量为契机,今 VR 产业关注度再次拔高,相关政策、资本资源不断倾斜。

 

在各方需求市场、资本市场的催生下VR 头显前沿光 Pancake 折叠光路设计也突破技术桎梏,全面落 VR 终端。

 

今年以来,已有多款采 Pancake 折叠光路设计 VR 终端产品陆续发布,包 YVR 2、创 Pancake 1 系列、联 ThinkReality VRXPICO 4 /4 Pro  Quest Pro

 

不同于菲涅尔透镜单一的光学放大原理Pancake 折叠光路设计的光路设计更加复杂,同时也让其内部构造更具可塑性,主要表现在镜片方案、贴膜和材质的选择之上,所以目前市面上所有在售 VR 头显 Pancake 光学方案也相差甚大。

 

一片、两片,片片不同,平面、曲面,面面俱到。本文尝试以国 VR 代表产 PICO 4 为例, Pancake 折叠光路设计的光学原理出发,结合两代产品拆机,深度解 Pancake 折叠光路光学密

 

img1

 

Pancake 光学发展史:源1962

 

先简单回 Pancake 折叠光路的发展史。

 

Pancake 折叠光路Pancake折叠光两部分构成Pancake 一词意,最早出现在科技领域是指镜头筒长度(比直径)的镜头,就像在相机镜头底座上被压扁一样,是对镜头外观的一种客观描述,在应 Pancake 镜头应用相机中,光线呈直线传播。

 

img2

Pentax-M Pancake光学镜头设计

 

相关资料记载1962  Pancake 商标被申请,折叠光路引入偏振概念,可用 VR 头显 Pancake 折叠光路设计也正式上线,由于有效焦距EFL)和光学总长TTL)的降低,因 Pancake 折叠光路在业内也被称之超短

 

使用偏振折叠机制,可以在紧凑的器件内,实现光源的传输和虚像放大。具体来看,在经典 Pancake 光学设计中,来自显示器的光首先通过一个圆形偏振器(假设RCP)和一个半反半透镜,然后通过一1/4相位片QWP)传输, QWP 将光的偏振改变 P 偏振。

 

 QWP 之后是配置为反 P 偏振光的偏振分光棱镜 PBS),然后光再次穿 QWP,成为右圆偏振光RCP)。在它从半反半透镜反射后,成为左圆偏振光LCPLCP 光将通QWP  PBS,线性偏振器LP)的透射轴 PBS 的透射轴对齐,发射 S 偏振光,最终进入人眼。

 

img3

 Pancake 光学系统中的偏振状态

 

在光的传导过程中,由于相关膜材对于光效的折损,经典 Pancake 光学设计可以达到 12.5% 的无偏振显示的效率, 25% 的具有偏振显示的效率。

 

伴随着海内外学术界、各大企业对 Pancake 折叠光路的逐渐深入研究和应用拓展, VR 产业兴起的第一浪潮Pancake 折叠光路也开始逐渐应用落地 VR Demo 阶段。

 

2015 年,国内虚拟现实公司多哚科技,美国微显示器制造 eMagin 先后展出基 Pancake 光学的工程样机Pancake 折叠光路 VR 中引用后,可以克服传统菲涅尔透镜、非球面透镜的许多问题,特别是 VR 头显的体积变化之上,几乎可以做到传统光学方案 1/2甚至更薄。

 

img4

 

历经早期 Demo 探索与技术矫正Pancake 折叠光路也慢慢走向商业化2019  4 3Glasses 发布了采 Pancake 光学方案 VR  3Glasses X1,裸机重量小150g2019  9 ,华为正式发布华VR Glass,采 Pancake 光学方案,重量仅 166g2020 PICO 展示了一款面 B 端市场的分体 VR  PICO X1 Glasses VR.....

 

早期基 Pancake 光学方案 VR 头显主要是以分体 VR 为主,无运算存储单元、 6DoF 追踪,无法独立运行,应用场景十分有限,多用于观影和投屏显示。而进入 2022 年,采 Pancake 光学方案 6DoF VR 一体机开始成为主流,佩戴体验、显示效果和应用厂商更是指数级的提升PICO 4 则是国 VR 代表产品之一。

 

PICO 4Pancake光学密码一:单片式设计,紧凑分布

 

Pancake 折叠光路的应用,最大变化在于采用折叠的光路结构,在保证虚像放大的同时,缩短屏幕到眼睛的直线距离,从而降低光机部分体积,进而达到降低整个头显体积,提高佩戴舒适性的目的。

 

(一)迭Pancake,光机厚度缩15mm

 

PICO 4采用了独家优化后的单片 Pancake 折叠光路设计,从大体结构上来看,光学部分主要由屏+膜材与镜+膜材两部分构成,结构看似非常简单,但光路传递过程却异常复杂。

 

据悉PICO 4 的光路传导路屏幕出射光(圆偏振光BS透射(圆偏振光QWP出射(垂直线偏振光RP反射(垂直线偏振光QWP出射(圆偏振光BS反射(圆偏振光,旋向相反QWP出射(水平线偏振光RP透过(水平线偏振光LP透过(水平线偏振光)。

 

img5

PICO式折叠光路设计

 

光源由此多次折返最终进入人眼,在较短 TTL 中,实现光源的聚集与虚像的放大,达成近眼显示功效。

 

VR陀螺拆解测量得知PICO 4 的光机模组高 30mm,单个重量 37g(含屏幕),相对于上一代采用菲涅尔透镜方案 PICO Neo3PICO 4  TTL 缩小 15mm 左右。

 

img6

PICO 4PICO Neo3;图源VR陀螺

 

(二)前置主机内部高效利用,体积缩38.8%

 

 Pancake 光学应用特点的延伸,光机模组体积的轻量化,同时也会间接减 VR 头显内部空间的占用,对 PICO Neo3PICO 4 的内部空间利用率几乎达到95% (陀螺君拆机目测)以上。

 

不管是头显正面主板部分,还是背面透镜部分,零部件都十分紧凑, PICO 4 壳身内部四周的各类传感器和线材更是十分密集,不放过一丝可利用空间。

 

img7

 

img8

PICO 4外壳,PICO 4光机铝镁合金背部不含主板,PICO 4光机部分,含主板;图源VR陀螺

 

扩展到整机来看PICO 4 相对于上代产 PICO Neo3,头显前端主体厚度减 38.8% 66mm 压缩到 35 mm,整体重量减 26.2%,仅 295g

 

img9

 

前端主机的重量的降低也进一步提高 VR 一体机前后配重的均衡性PICO Neo3 的前后配重比为395/160=2.24PICO 4 的前后配重比 295/187=1.57

 

在头显重量一定时,前后配重的合理分配,有助于分摊头显对于用户头部的向下重力,进一步提高用户在佩戴体 VR 时的舒适性,保证长时间安全健康的使用。

 

img10

图源PICO

 

VR 头显的产品设计,人体工学是重要的组成部分,不过更为核心的还是需要回归到近眼显示的效果研究之上。

 

PICO 4Pancake光学密码二:FOV、降鬼影畸变与物理限制之间的博弈

 

人眼是一种自然进化的光学成像系统,光线通过可调节的虹膜进入眼睛,虹膜控制光的吞吐量。在被角膜和晶状体折射后,光线在视网膜上形成图像。

 

与物理世界中的看到即得到不同VR 近眼显示是典型的间接性成像,它需要依靠光学介质。

 

最终人眼感知显示效果与头显 FOV 大小Eye box 范围MTF 值等核心光学参数强相关。

 

(一105FOV,兼顾更Eye-box

 

在双目视觉中,人类的水平视 FOV  200°,其 120° 是双目重叠VR 头显要想提升沉浸感,那 FOV 在理论参数上越接 120°,则越能让用户看到更多画面,减少黑边视觉影响。

 

据悉PICO 4  FOV 水平方向和垂直方向都达到 105 度,通过相机实拍(镜头视场角120度(横向x 80度(纵向)),结合网格线,可以非常明显看 PICO 两代产品横 FOV 大小的进化。在临场感方面,与同价位 VR 一体机相比,参数较为突出。

 

img11

PICO Neo3PICO 4

 

一般来说越大的屏幕越容易做到更大 FOVPICO 4 采用了特别定制的两 2.56  Fast-LCD 屏幕,该屏幕尺寸高于目前市面上的大多数采两块 VR 头显,这是其培育 FOV 的基础要素。

 

由于光学传播过程中没有其他镜片的影响,单片 Pancake 可以保证在同样镜片直径的情况下 FOV 做到最大,所 PICO 4 所采用的单片 Pancake 光学方案是其造 105  FOV 的核心要素。

 

当然,或 PICO 4 在该屏幕尺寸和光学方案下,还能 FOV 做到更大,但是它还需要考虑 Eye-box 的范围(甜蜜点)。

 

Eye-box  AR/VR 光学设计的关键参数Eye-box 的大小决定了用户看到整个虚拟放大图像的体验。为了确保显示图像始终可见VR 头显的出口瞳 Eye-box 必须大于眼睛运动范围, 12 毫米。

 

img12

 

 VR 显示系统而言FOV  Eye-box 的乘积与设备的空间乘积成正比,并且是有限的。因此,增 FOV 大小将减 Eye-box 范围,反之亦然。

 

所以PICO 4 在这一光学系统上做出了一个权衡三方的选择,在保 Pancake 折叠光路带来的轻量化体积的前提下,采用单片式设计, FOV 提升 105 度,并实现了更大 Eye-box ,这意味用户在使 VR 时,不用去刻意盯着某一个点以获取虚拟图像,减少眼部疲劳。

 

在用户体验某些需要大幅度运动 VR 应用时,如《超燃一刻》,头显可能跟随人体的摆动而发生细微偏移,而更大 Eye-box 则保证了运动中 VR 头显一直保持稳定的可视范围。

 

(二)参0.6MTFPICO 4光学镜头解析力Neo385.7%

 

MTF 是衡量一个光学镜头的核心参数,它是对镜头的解像力的一个定量描述,确切地说是对镜头成像的清晰程度(包含分辨率和锐度两个因素)的一个定量描述。在数码相机或手机相机镜头中,由于需要对外界光线进行精确的把握和捕捉,所以理论上镜片数量越多,光学传递表现也就越好。

 

这一原理 VR 头显上同样适用PICO 的光学技术专家VR陀螺表示:越多的镜片数量可以带来更多的光学设计优化空间,提升显示效果。但 Pancake 镜头来说,镜片数量增加会带来其它挑战,如鬼影,重量以及公差控制这也 PICO 采用单片 Pancake 光学设计的核心考量要素之一。

 

img13

图源PICO

 

已知参 MTF 0.6PICO 4 的光学镜头解析力 Neo3 提升 85.7%(最大值)。但对于头显而言,因为其透镜光学系统设计,所以一般中心区 MTF 较高,而边缘较低,而在边缘区域,相 PICO Neo3PICO 4 整机的显示清晰度也提 20% 及以上。

 

从透镜中心区域到边缘区域光学解析力的整体曲线幅度来看Pancake 光学镜头替换菲涅尔透镜的光学优势明显,线条较为平滑,不过仍然有待进一步优化。

 

另外,从入眼亮度来看,相对于上一代采用一 5.5 英寸+菲涅尔透镜 PICO Neo3,采2.56 +单片 Pancake 折叠光路 PICO 4 入眼亮度更均匀,可以更好还原画面图像色彩。从某种角度上来说,入眼亮度的均匀分布,还能在视力保护方面有一定功效。

 

img14

PICO 4PICO Neo3,图源PICO

 

在单片 Pancake 折叠光路的加持下PICO 4 在近眼显示方面优势明显,从 FOV Eye-box 范围,再 MTF 值。不过它仍逃不 Pancake 折叠光路本身物理性质决定的光学缺点,鬼影是其中之一。

 

(三)鬼影与畸变弱化

 

 Pancake 折叠光路的光学性质,导致光源在折返过程中,存在偏振漏光等形成的杂散光,从而影响到最终入眼呈像效果,这个现象我们叫

 

img15

 

由于鬼影是光路设计所造成的,所以 Pancake 折叠光路设计中,鬼影只能降低弱化,不能完全消除。

 

据悉PICO 4 针对鬼影的解决方案主要是通过优化膜材设计和选型,控制光轴角度精度,增加相位补偿膜来实现更好的偏振转化效率,使鬼影整体水平大幅度降低,对比市场上其他使 Pancake 光学方案的产品,鬼影度下降了一半左右。

 

鬼影和杂散光还会造成对比度的下降PICO 4 使用棋盘格的方式评价对比度,横向对比之下,实测对比度处于优异水平。此外,在畸变方面,透镜显示边缘的棋盘格也不会有明显的方格扭曲,画面模糊化等现象产生。

 

img16

用于畸变测试样图,图源VR陀螺

 

PICO 4Pancake光学密码三:突破量产的技术瓶颈

 

从近两年国内外推出的基 Pancake 折叠光路设计的数 VR 一体机可以发现,采 Pancake 技术方案并不难,难的是做到高良率生产,规划化量产与消费级价格。

 

高良率生产主要体现在贴膜方面。高良率下的批量生产 Pancake 折叠光路的工艺比传统的光学方案的要求更高,包括贴膜的精度、质量的管理、精度管控和一致性等方面。

 

 PICO 4 而言,它所采用的单片 Pancake 光学方案同样遇到了膜材褶皱等问题的挑战PICO  VR陀螺提到基于传统的单片 Pancake 折叠光路设 PICO 4 需要在直径 40 毫米 50 毫米的光学镜片上,再均匀地贴上一层膜,这对于膜材的平整度,甚至是灰尘都有非常严苛的要求。膜材的任何一点点瑕疵,都会对整个光学系统造成很大的影响

 

PICO 对整个光学设计进行了改良,通过更精密的工艺实现了波度更小、表面更平整的偏振反射膜,光线梳理得更好,从而实现更高 MTF 值,更好的入眼清晰度体验。

 

不同类型品牌会针对自己的市场情况和产品定位,采取不同的技术方案PICO 4 在选择贴膜方式和做膜系设计的时候平衡了产品的性能和技术成熟度,最终得 2499 元的消费级价格。这也 PICO 此次采用的改良版 Pancake 技术方案,对于行业的一次技术创新意义,极具参考价值。

 

img17

PICO 4光学模组,PICO Neo3光学模组,图源VR陀螺

 

结语

 

VR 产业 2014 年发展至今,仍有许多问题尚未解决,其中很大部分来自其独特近眼显系统方面,譬如摆在厂商面前 Pancake 折叠光路方案其实有很多种:

 

Pancake 单片的优势是可以保证在同样镜片直径的情况下 FOV 做到最大,同时可以用一片镜片实现光路的折返,所以鬼影效果会略优于双片设计。

 

双片的优势是可以实现光学模组的极致轻薄以及更好的清晰度,但成本会略有增加。三片是用更多的镜片来优化光学性能,比如清晰度、畸变,但会增加工艺难度以及物料成本、重量等。

 

总而言之,单片、双片和三片各有优劣:单片的优势是视野大、成本低、鬼影度好;但双片或三片在清晰度和总厚度方面更有优势。

 

对于硬件厂商而言,只能在现有的资源中,去做技术突围与商业落地,在提 VR 头显体积、头戴设计、显示效果FOV  Eye-box 等多方面达到一个相对高参数的同时,保证一 C 端市场的价格, PICO 4 显然是兼顾了以上的各个方面,在这 Pancake 技术突围和商业落地的博弈之间,找到了最佳平衡点。

 

 

(蜂耘激光光学网   责任编辑:行云)

2022-11-04 09:53

广告

来源:VR陀螺
对于 VR 圈来说,2022 年是不平凡的一年。以去年全球超千万台 VR 终端销量为契机,今年 VR 产业关注度再次拔高,相关政策、资本资源不断倾斜。在各方需求市场、资本市场的催生下,VR 头显的“前沿光学” Pancake 折叠光路设计也突破技术桎梏,全面落地 VR 终端。

声明:凡来源标明“蜂耘网”的文章版权均为本站所有,如需转载请务必注明出处,违者本网将追究相关法律责任;所有未标明来源为“蜂耘网”的转载文章目的在于传递更多信息,均不代表本网立场及观点,“蜂耘网”不对这些第三方内容或链接做任何保证或承担任何责任;如涉及版权等问题,请在内容发表之日起一周内与本网联系,否则视为放弃相关权利。

所有评论仅代表网友意见,与本站立场无关

最新资讯

推荐阅读

热门排行

1、

2、

3、

4、

5、

6、

7、

8、

专题推荐

人物访谈

  • 一文了解查理·芒格:为什么他是巴菲特最推崇的人

    来源:
    ①巴菲特写道,“如果没有查理的灵感、智慧和参与,伯克希尔-哈撒韦公司不可能发展到今天的地位”;
    ②芒格曾表示,“如果世上未曾有过查理·芒格这个人,巴菲特的业绩依然会像现在这么漂亮 ”
    ③两周前,芒格还公开在节目中维护93岁的老友巴菲特。

    133 2023-11-29
  • 面壁者,拉里·佩奇

    来源:中欧商业评论
    这两年,硅谷钢铁侠埃隆·马斯克在社交媒体上口无遮拦,这为他的公司引来了铺天盖地的负面新闻,然而,他的好友、谷歌联合创始人拉里·佩奇却因为看不到人同样被媒体炮轰多时。他已经在公共视野中消失太久了。

    250 2022-06-15
  • 百岁中科院院士文圣常逝世!被誉为我国海浪研究的“点灯人”

    来源:南方都市报
     3月21日上午,中国海洋大学发布讣告,中国科学院院士、著名物理海洋学家、该校教授文圣常,因病医治无效,于3月20日15时37分在山东青岛逝世,享年101岁。

    293 2022-03-21

会议活动

微信公众号

广告

相关新闻